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Introduction

• In a distribution network with energy storage systems and advanced controls,

traditional monitoring and protection schemes are not well suited for detecting

anomalies such as malfunction of controllable devices.

• We propose a data-driven method that requires no prior knowledge of the network

dynamic model for the detection of these anomalies.

• The algorithm proposed is robust to load variations and noise measurements.

Conclusion

Koopman Operator Theory

• Classical approaches for incident detection rely on some knowledge of the

system topology, such as in graph-based techniques and methods based on

traveling waves.

• With the introduction of PMUs, data-driven techniques started receiving more

attention, as in the case with SVD-based approaches [1].

• Our proposed approach draws on Koopman operator theory, which accounts for

the causal relationship among multiple sensor data streams without prior

knowledge of the dynamic model.

• The Koopman operator is infinite-dimensional, making computation impractical.

• Extended Dynamic Mode Decomposition (EDMD) overcomes this issue by

providing a finite-dimensional approximation of Koopman operator.

• EDMD uses time-series data and hence it is suitable for data-driven frameworks.

• Incident detection method is formulated as a sparsity-promoting variant of EDMD.

Case Studies

• We considered the IEEE 8500-node Test feeder unbalanced radial network with 7

grid battery energy storage systems (BESS) added.

• BESS can perform Volt/VAR control and take real power dispatch commands.

• The data was generated in OpenDSS, assuming voltage magnitude and phase

measurements from PMUs were available at the nodes of 3 of these BESS.

• Gaussian noise was added to the voltage magnitude (±0.01%) and voltage angle

(±0.01°) measurements.

• Fluctuations in load real and reactive power were considered in the feeder model.

• Changes in the sparsity pattern of the 𝒦 matrices indicated the occurrence of an

incident.

• To confirm the 𝒦 matrices had unique sparsity patterns for each scenario in which

the causality of the model was maintained, an offline analysis was performed

using k-means clustering to classify these matrices.

• Typical results showed misclassifications immediately after incidents occurred,

while remaining 𝒦’s were correctly classified.

1) Detecting changes in battery discharge rate

• The Koopman operator 𝒦 is a linear operator for the dynamics of 𝑥(𝑡) in the

observable space.
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Methodology for Incident Detection

• We hypothesize that the relationship between different time-series data carries

more information than individual data streams.

• Instead of using raw data for the incident detection via Koopman operators, we

augment the data with the use of the Gaussian kernel function.

𝑔 𝑥𝑖 , 𝑥𝑗 = exp −
𝑥𝑖 − 𝑥𝑗
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• This nonlinear transformation lifts the data into a higher dimensional space by

giving a measure of similarity between states 𝑥𝑖.
• The transformed data is used to compute a sequence of 𝒦 matrices through a

sliding window, and significant changes in 𝒦 indicates altered causality in states

(i.e., occurrence of incidents).
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2) Detecting changes in battery controller parameters
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